Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.312
Filtrar
1.
Cell Mol Life Sci ; 81(1): 164, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575795

RESUMO

Diabetic hyperglycemia induces dysfunctions of arterial smooth muscle, leading to diabetic vascular complications. The CaV1.2 calcium channel is one primary pathway for Ca2+ influx, which initiates vasoconstriction. However, the long-term regulation mechanism(s) for vascular CaV1.2 functions under hyperglycemic condition remains unknown. Here, Sprague-Dawley rats fed with high-fat diet in combination with low dose streptozotocin and Goto-Kakizaki (GK) rats were used as diabetic models. Isolated mesenteric arteries (MAs) and vascular smooth muscle cells (VSMCs) from rat models were used to assess K+-induced arterial constriction and CaV1.2 channel functions using vascular myograph and whole-cell patch clamp, respectively. K+-induced vasoconstriction is persistently enhanced in the MAs from diabetic rats, and CaV1.2 alternative spliced exon 9* is increased, while exon 33 is decreased in rat diabetic arteries. Furthermore, CaV1.2 channels exhibit hyperpolarized current-voltage and activation curve in VSMCs from diabetic rats, which facilitates the channel function. Unexpectedly, the application of glycated serum (GS), mimicking advanced glycation end-products (AGEs), but not glucose, downregulates the expression of the splicing factor Rbfox1 in VSMCs. Moreover, GS application or Rbfox1 knockdown dynamically regulates alternative exons 9* and 33, leading to facilitated functions of CaV1.2 channels in VSMCs and MAs. Notably, GS increases K+-induced intracellular calcium concentration of VSMCs and the vasoconstriction of MAs. These results reveal that AGEs, not glucose, long-termly regulates CaV1.2 alternative splicing events by decreasing Rbfox1 expression, thereby enhancing channel functions and increasing vasoconstriction under diabetic hyperglycemia. This study identifies the specific molecular mechanism for enhanced vasoconstriction under hyperglycemia, providing a potential target for managing diabetic vascular complications.


Assuntos
Diabetes Mellitus Experimental , Angiopatias Diabéticas , Hiperglicemia , Animais , Ratos , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Constrição , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/metabolismo , Glucose/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos Sprague-Dawley
2.
Sci Rep ; 14(1): 8247, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589438

RESUMO

The aim of the present study was to prepare and evaluate Piperine (PP) loaded chitosan lipid nanoparticles (PP-CLNPs) to evaluate its biological activity alone or in combination with the antidiabetic drug Metformin (MET) in the management of cognitive deficit in diabetic rats. Piperine was successfully loaded on CLNPs prepared using chitosan, stearic acid, Tween 80 and Tripolyphosphate (TPP) at different concentrations. The developed CLNPs exhibited high entrapment efficiency that ranged from 85.12 to 97.41%, a particle size in the range of 59.56-414 nm and a negatively charged zeta potential values (- 20.1 to - 43.9 mV). In vitro release study revealed enhanced PP release from CLNPs compared to that from free PP suspensions for up to 24 h. In vivo studies revealed that treatment with the optimized PP-CLNPs formulation (F2) exerted a cognitive enhancing effect and ameliorated the oxidative stress associated with diabetes. PP-CLNPs acted as an effective bio-enhancer which increased the potency of metformin in protecting brain tissue from diabetes-induced neuroinflammation and memory deterioration. These results suggested that CLNPs could be a promising drug delivery system for encapsulating PP and thus can be used as an adjuvant therapy in the management of high-risk diabetic cognitive impairment conditions.


Assuntos
Alcaloides , Benzodioxóis , Quitosana , Disfunção Cognitiva , Diabetes Mellitus Experimental , Lipossomos , Metformina , Nanopartículas , Piperidinas , Alcamidas Poli-Insaturadas , Ratos , Animais , Ratos Wistar , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Cognição , Metformina/farmacologia , Metformina/uso terapêutico , Tamanho da Partícula , Portadores de Fármacos
3.
BMC Ophthalmol ; 24(1): 155, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594682

RESUMO

INTRODUCTION: In recent years, insulin eye drops have attracted increasing attention from researchers and ophthalmologists. The aim of this study was to investigate the efficacy and possible mechanism of action of insulin eye drops in diabetic mice with corneal wounds. METHODS: A type 1 diabetes model was induced, and a corneal epithelial injury model of 2.5 mm was established. We used corneal fluorescein staining, hematoxylin-eosin (H-E) staining and the Cochet-Bonnet esthesiometer to examine the process of wound healing. Subsequently, the expression levels of Ki-67, IL-1ß, ß3-tubulin and neuropeptides, including substance P (SP) and calcitonin gene-related peptide (CGRP), were examined at 72 h after corneal injury. RESULTS: Fluorescein staining demonstrated an acceleration of the recovery of corneal epithelial injury in diabetic mice compared with the saline treatment, which was further evidenced by the overexpression of Ki-67. Moreover, 72 h of insulin application attenuated the expression of inflammatory cytokines and neutrophil infiltration. Remarkably, the results demonstrated that topical insulin treatment enhanced the density of corneal epithelial nerves, as well as neuropeptide SP and CGRP release, in the healing cornea via immunofluorescence staining. CONCLUSIONS: Our results indicated that insulin eye drops may accelerate corneal wound healing and decrease inflammatory responses in diabetic mice by promoting nerve regeneration and increasing levels of neuropeptides SP and CGRP.


Assuntos
Lesões da Córnea , Diabetes Mellitus Experimental , Epitélio Corneano , Ceratite , Camundongos , Animais , Epitélio Corneano/metabolismo , Insulina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Soluções Oftálmicas , Antígeno Ki-67/metabolismo , Córnea/fisiologia , Lesões da Córnea/tratamento farmacológico , Cicatrização , Ceratite/metabolismo , Fluoresceína/metabolismo , Inflamação/metabolismo
4.
BMC Complement Med Ther ; 24(1): 149, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581015

RESUMO

BACKGROUND: Diabetes Mellitus is associated with disturbances in male reproductive function and fertility. Studies have shown that oxidative stress with the subsequent inflammation and apoptosis cause these complications in diabetes. Garlic (G) (Allium sativum L) and Citrullus colocynthis (L.) Schrad (C) both have antidiabetic and antioxidant properties. Recently, we demonstrated their synergistic effects in alleviating reproductive complications when administered concomitantly. However, as even medicinal plants in long term usage may lead to some unwanted side effects of their own, we examined whether with half the original doses of these two medicinal plants we could achieve the desired results. METHODS: Thirty-five male Wistar rats were divided into five groups (n = 7/group): Control, Diabetic, Diabetic + G (0.5 ml/100 g BW), Diabetic + C (5 mg/kg BW) and Diabetic + GC (0.5 ml/100 g BW of garlic and 5 mg/kg BW of C. colocynthis) groups. The experimental period was 30 days. RESULTS: Oxidative stress, advanced glycation end products (AGEs), immunoexpression of caspase-3, and expression of mRNAs for receptor for advanced glycation end products (RAGE), NADPH oxidase-4 (NOX-4) and nuclear factor kappa B increased in testis of diabetic rats. Treatment with garlic and C. colocynthis alone showed some beneficial effects, but in the combination form the effectiveness was more profound. CONCLUSIONS: We conclude that the combination therapy of diabetic rats with lower doses is still as efficient as higher doses; therefore, the way forward for reducing complications in long term consumption.


Assuntos
Citrullus colocynthis , Diabetes Mellitus Experimental , Alho , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Alho/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
5.
Sci Prog ; 107(2): 368504241239444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38614462

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) poses a significant challenge for physicians, necessitating the management of cell damage and the preservation of organ functions. Various surgical procedures, such as vascular surgery on extremities, temporary cross-clamping of the abdominal aorta in aortic surgery, and the use of a tourniquet in extremity surgeries, may induce lower limb IRI. The susceptibility to IRI is heightened in individuals with diabetes. This study aimed to investigate the effects of fullerenol C60 and sevoflurane on mouse muscle tissue in a lower limb IRI model and to assess their potential in preventing complications arising from ischemia-reperfusion in mice with streptozocin-induced diabetes. METHODS: A total of 36 adult Swiss albino mice were randomly divided into six groups, each consisting of six mice: control group (group C), diabetes group (group D), diabetes-ischemia/reperfusion group (group DIR), diabetes-ischemia/reperfusion-fullerenol C60 group (group DIR-FC60), diabetes-ischemia/reperfusion-sevoflurane group (group DIR-S), and diabetes-ischemia/reperfusion-sevoflurane-fullerenol C60 group (DIR-S-FC60). Streptozocin (55 mg/kg) was intraperitoneally administered to induce diabetes in the relevant groups, with mice displaying blood glucose levels of 250 mg/dL or higher at 72 h were considered diabetic. After 4 weeks, all groups underwent laparotomy under anesthesia. In DIR-FC60 and DIR-S-FC60 groups, fullerenol C60 (100 mg/kg) was intraperitoneally administrated 30 min before the ischemia period. Sevoflurane, delivered in 100% oxygen at a rate of 2.3% and 4 L/min, was administered during the ischemia period in DIR-S and DIR-S-FC60 groups. In the IR groups, a microvascular clamp was placed on the infrarenal abdominal aorta for 120 min during the ischemia period, followed by the removal of the clamp and a 120-min reperfusion period. At the end of the reperfusion, gastrocnemius muscle tissues were removed for histopathological and biochemical parameter examinations. RESULTS: Histopathological examination revealed a significant reduction in the disorganization and degeneration of muscle cells in the DIR-S-FC60 group compared to the DIR group (p = 0.041). Inflammatory cell infiltration was notably lower in the DIR-S, DIR-FC60, and DIR-S-FC60 groups than in the DIR group (p = 0.031, p = 0.011, and p = 0.013, respectively). The total damage scores in the DIR-FC60 and DIR-S-FC60 groups were significantly lower than in the DIR group (p = 0.018 and p = 0.008, respectively). Furthermore, the levels of malondialdehyde (MDA) in the DIR-S, DIR-FC60, and DIR-S-FC60 groups were significantly lower than in the DIR group (p < 0.001, p < 0.001, and p < 0.001, respectively). Catalase (CAT) enzyme activity in the DIR-S, DIR-FC60, and DIR-S-FC60 groups was higher than in the DIR group (p = 0.001, p = 0.014, and p < 0.001, respectively). Superoxide dismutase (SOD) enzyme activity in the DIR-FC60 and DIR-S-FC60 groups was also higher than in the DIR group (p < 0.001 and p = 0.001, respectively). CONCLUSION: Our findings indicate that administering fullerenol C60 30 min prior to ischemia in diabetic mice, in combination with sevoflurane, led to a reduction in oxidative stress and the correction of IR-related damage in muscle tissue histopathology. We believe that the administration of fullerenol C60 before IR, coupled with sevoflurane administration during IR, exerts a protective effect in mice.


Assuntos
Diabetes Mellitus Experimental , Fulerenos , Traumatismo por Reperfusão , Animais , Camundongos , Sevoflurano , Estreptozocina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Isquemia , Traumatismo por Reperfusão/tratamento farmacológico , Extremidade Inferior
6.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 48-53, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650154

RESUMO

Plentiful studies have clarified miRNAs take on a key role in the sexual dysfunction of diabetic rats. This study aimed to figure out microRNA (miR)-503-5p/SYDE2 axis' latent mechanisms in streptozotocin-induced diabetic rat sexual dysfunction. A model of erectile dysfunction (ED) in diabetic rats was established by injecting streptozotocin. MiR-503-5p and SYDE2 in ED rats were altered by injection of miR-503-5p mimic or si/oe-SYDE2. The targeting link between miR-503-5p and SYDE2 was testified. ICP/MAP value was tested by pressure sensor; Penile capillary abundance was assessed; Penile cGMP and AGEs were detected; penile smooth muscle cell apoptosis was assessed; MiR-503-5p and SYDE2 were tested. In streptozotocin-induced ED rats, miR-503-5p was reduced and SYDE2 was elevated. Elevating miR-503-5p or silencing of SYDE2 can enhance penile erection rate, ICP/MAP value, capillary abundance, and cGMP but reduce AGEs and penile smooth muscle cell apoptosis rate in ED rats. Strengthening SYDE2 with elevating miR-503-5p turned around the accelerating effect of elevated miR-503-5p on penile erection in ED rats. SYDE2 was a downstream target gene of miR-503-5p. MiR-503-5p protects streptozotocin-induced sexual dysfunction in diabetic rats by targeting SYDE2.


Assuntos
Apoptose , Diabetes Mellitus Experimental , Regulação para Baixo , Disfunção Erétil , MicroRNAs , Pênis , Ratos Sprague-Dawley , Animais , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Disfunção Erétil/genética , Disfunção Erétil/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Apoptose/genética , Regulação para Baixo/genética , Pênis/patologia , Estreptozocina , Ereção Peniana , Ratos , GMP Cíclico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miócitos de Músculo Liso/metabolismo , Produtos Finais de Glicação Avançada/metabolismo
7.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38541120

RESUMO

Background and Objectives: Diabetes mellitus is a chronic metabolic disease associated with several complications, including that of kidney disease. Plant-based dietary products have shown promise in mitigating these effects to improve kidney function and prevent tissue damage. This study assessed the possible favorable effects of beetroot extract (BE) in improving kidney function and preventing tissue damage in diabetic rats. Materials and Methods: Type 2 diabetes mellitus (T2DM) was induced using a low dose of streptozotocin (STZ). Both control and rats with pre-established T2DM were divided into six groups (each consisting of eight rats). All treatments were given by gavage and continued for 12 weeks. Fasting blood glucose levels, serum fasting insulin levels, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum triglycerides, cholesterol, low-density lipoprotein-cholesterol, serum and urinary albumin, and creatinine and urea levels were measured. Apart from this, glutathione, malondialdehyde, superoxide dismutase, tumor necrosis factor-α, and interleukine-6 in the kidney homogenates of all groups of rats were measured, and the histopathological evaluation of the kidney was also performed. Results: It was observed that treatment with BE increased body weight significantly (p ≤ 0.05) to be similar to that of control groups. Fasting glucose, insulin, HOMA-IR levels, and lipid profile in the plasma of the pre-established T2DM rats groups decreased to p ≤ 0.05 in the BE-treated rats as the BE concentration increased. Treatment with BE also improved the renal levels of oxidative stress and inflammatory markers, urinary albumin, and serum creatinine and urea levels. Unlike all other groups, only the kidney tissues of the T2DM + BE (500 mg/kg) rats group showed normal kidney tissue structure, which appears to be similar to those found in the kidney tissues of the control rats groups. Conclusion: we found that streptozotocin administration disturbed markers of kidney dysfunction. However, Beta vulgaris L. root extract reversed these changes through antioxidant, anti-inflammatory, and antiapoptotic mechanisms.


Assuntos
Beta vulgaris , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Beta vulgaris/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Metanol/farmacologia , Metanol/uso terapêutico , Estreptozocina , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glicemia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Insulina , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Colesterol , Albuminas
8.
Acta Neuropathol ; 147(1): 60, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526612

RESUMO

Preclinical studies indicate that diverse muscarinic receptor antagonists, acting via the M1 sub-type, promote neuritogenesis from sensory neurons in vitro and prevent and/or reverse both structural and functional indices of neuropathy in rodent models of diabetes. We sought to translate this as a potential therapeutic approach against structural and functional indices of diabetic neuropathy using oxybutynin, a muscarinic antagonist approved for clinical use against overactive bladder. Studies were performed using sensory neurons maintained in vitro, rodent models of type 1 or type 2 diabetes and human subjects with type 2 diabetes and confirmed neuropathy. Oxybutynin promoted significant neurite outgrowth in sensory neuron cultures derived from adult normal rats and STZ-diabetic mice, with maximal efficacy in the 1-100 nmol/l range. This was accompanied by a significantly enhanced mitochondrial energetic profile as reflected by increased basal and maximal respiration and spare respiratory capacity. Systemic (3-10 mg/kg/day s.c.) and topical (3% gel daily) oxybutynin reversed paw heat hypoalgesia in the STZ and db/db mouse models of diabetes and reversed paw tactile allodynia in STZ-diabetic rats. Loss of nerve profiles in the skin and cornea of db/db mice was also prevented by daily topical delivery of 3% oxybutynin for 8 weeks. A randomized, double-blind, placebo-controlled interventional trial was performed in subjects with type 2 diabetes and established peripheral neuropathy. Subjects received daily topical treatment with 3% oxybutynin gel or placebo for 6 months. The a priori designated primary endpoint, significant change in intra-epidermal nerve fibre density (IENFD) in skin biopsies taken before and after 20 weeks of treatments, was met by oxybutynin but not placebo. Secondary endpoints showing significant improvement with oxybutynin treatment included scores on clinical neuropathy, pain and quality of life scales. This proof-of-concept study indicates that muscarinic antagonists suitable for long-term use may offer a novel therapeutic opportunity for treatment of diabetic neuropathy. Trial registry number: NCT03050827.


Assuntos
Neuropatias Diabéticas , Antagonistas Muscarínicos , Animais , Humanos , Camundongos , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/patologia , Ácidos Mandélicos , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/uso terapêutico , Qualidade de Vida , Receptores Muscarínicos , Diabetes Mellitus Tipo 1
9.
J Ethnopharmacol ; 328: 118083, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521428

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetes is a significant metabolic disease impacting many of the world's population. In Morocco, a wide range of medicinal plants has taken great importance in the treatment of diabetes, among these plants; we find Argania spinosa (L.) Skeels. AIM: The objective of our work is based on the evaluation of the effect of roasted (Roil) and unroasted (UnRoil) Argan seed oil on diabetic nephropathy. MATERIALS AND METHODS: Roasted and unroasted oils from Argania spinosa (L.) Skeels seeds were examined for their effects on diabetic nephropathy using an experimental streptozotocin-induced model. Biochemical and histopathological analyses were conducted on blood and kidney samples to assess renal function and tissue damage. RESULTS: Both oils ameliorated significantly diabetic nephropathy symptoms. They limited the renal damage caused by streptozotocin and improved diabetes symptoms, including blood glucose levels, body weight, water intake, urinary volume, and kidney parameters. This activity could be elucidated by the antioxidant effect of Argan oil, enabling to neutralize free radicals and undertake a fundamental role in preventing the onset of these complications. CONCLUSION: Based on our findings, Argan oil could be used as dietary supplement for people with diabetes as a preventive measure against the emergence of diabetic complications.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Sapotaceae , Humanos , Ratos , Animais , Ratos Wistar , Estreptozocina , Nefropatias Diabéticas/tratamento farmacológico , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico
10.
J Diabetes Res ; 2024: 2920694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529047

RESUMO

Background: Diabetic keratopathy (DK) poses a significant challenge in diabetes mellitus, yet its molecular pathways and effective treatments remain elusive. The aim of our research was to explore the pyroptosis-related genes in the corneal epithelium of the streptozocin-induced diabetic rats. Methods: After sixteen weeks of streptozocin intraperitoneal injection, corneal epithelium from three diabetic rats and three normal groups underwent whole-transcriptome sequencing. An integrated bioinformatics pipeline, including differentially expressed gene (DEG) identification, enrichment analysis, protein-protein interaction (PPI) network, coexpression, drug prediction, and immune deconvolution analyses, identified hub genes and key drivers in DK pathogenesis. These hub genes were subsequently validated in vivo through RT-qPCR. Results: A total of 459 DEGs were screened out from the diabetic group and nondiabetic controls. Gene Set Enrichment Analysis highlighted significant enrichment of the NOD-like receptor, Toll-like receptor, and NF-kappa B signaling pathways. Intersection of DEGs and pyroptosis-related datasets showed 33 differentially expressed pyroptosis-related genes (DEPRGs) associated with pathways such as IL-17, NOD-like receptor, TNF, and Toll-like receptor signaling. A competing endogenous RNA network comprising 16 DEPRGs, 22 lncRNAs, 13 miRNAs, and 3 circRNAs was constructed. After PPI network, five hub genes (Nfkb1, Casp8, Traf6, Ptgs2, and Il18) were identified as upregulated in the diabetic group, and their expression was validated by RT-qPCR in streptozocin-induced rats. Immune infiltration characterization showed that diabetic corneas owned a higher proportion of resting mast cells, activated NK cells, and memory-resting CD4 T cells. Finally, several small compounds including all-trans-retinoic acid, Chaihu Shugan San, dexamethasone, and resveratrol were suggested as potential therapies targeting these hub genes for DK. Conclusions: The identified and validated hub genes, Nfkb1, Casp8, Traf6, Ptgs2, and Il18, may play crucial roles in DK pathogenesis and serve as therapeutic targets.


Assuntos
Diabetes Mellitus Experimental , Piroptose , Animais , Ratos , Biologia Computacional , Ciclo-Oxigenase 2 , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Interleucina-18 , Piroptose/genética , Estreptozocina , Fator 6 Associado a Receptor de TNF
11.
Biomed Pharmacother ; 173: 116461, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503237

RESUMO

Esculeoside A (ESA) is a tomato-derived glycoside with antioxidant and anti-inflammatory properties. The protective effect of ESA against diabetic retinopathy is not well-investigated and was the core objective of this study. In addition, we tested if such protection involves the activation of Nrf2 signaling. Type 1 diabetes mellitus (T1DM) was induced in adult Wistar male rats by an intraperitoneal injection of streptozotocin (65 mg/kg). Non-diabetic and T1DM rats were divided into two subgroup groups given either the vehicle or ESA (100 mg)/kg. An additional T1DM group was given ESA (100 mg/kg) and an Nrf2 inhibitor (2 mg/kg) (n=8 rats/group). Treatments continued for 12 weeks. In this study, according to the histological features, ESA improved the structure of ganglionic cells and increased the number of cells of the inner nuclear and plexiform layers in the retinas of T1DM rats. Concomitantly, it reduced the retina levels of malondialdehyde (lipid peroxides), vascular endothelial growth factor, interleukin-6, tumor necrosis factor-α, Bax, and caspase-3. In the retinas of the control and diabetic rats, ESA boosted the levels of total glutathione, superoxide dismutase, heme-oxygenase-1, and Bcl2, reduced the mRNA levels of REDD1, and enhanced cytoplasmic and nuclear levels of Nrf2. However, ESA failed to alter the mRNA levels of Nrf2 and keap1, protein levels of keap1, plasma glucose, plasma insulin, serum triglycerides, cholesterol, and LDL-c in both the control and T1DM rats. In conclusion, ESA alleviates retinopathy in T1DM rats by suppressing REDD1-associated degradation and inhibiting the Nrf2/antioxidant axis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Retinopatia Diabética , Sapogeninas , Ratos , Masculino , Animais , Antioxidantes/metabolismo , Ratos Wistar , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estreptozocina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Retinopatia Diabética/metabolismo , RNA Mensageiro/metabolismo , Estresse Oxidativo
12.
Tissue Cell ; 87: 102342, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430848

RESUMO

BACKGROUND: T2DM is a chronic disorder with progressive neuromuscular alterations. L-arginine (ARG) is the most common semi-essential amino acid having several metabolic functions. AIM: to investigate the impact of L-arginine in combating diabetic-induced neuromyopathy and its possible mechanisms. MATERIALS & METHODS: 24 rats were divided into CON, CON+ARG, DC, DC+ARG. Behavioral tests, Body weight (BW), fasting blood glucose (FBG), insulin, total antioxidant capacity (TAC), malondialdehyde (MDA), plasminogen activator inhibitor-1 (PAI-1), and irisin were done. Creatine kinase-MM (CK-MM), interleukin 4 (IL-4), interleukin 6 (IL-6), TAC, MDA, expression of microRNA-29a mRNA & light chain 3 protein were determined in muscle. Histological and NF-κß immunohistochemical expression in muscle and nerve were assessed. RESULTS: ARG supplementation to diabetic rats improved altered behavior, significantly increased BW, insulin, TAC, irisin and Il-4, decreased levels of glucose, microRNA-29a, NF-κß and LC3 expression, PAI-1, CK-MM and restored the normal histological appearance. CONCLUSIONS: ARG supplementation potently alleviated diabetic-induced neuromuscular alterations.


Assuntos
Diabetes Mellitus Experimental , MicroRNAs , Doenças Musculares , Animais , Ratos , Fibronectinas/genética , Interleucina-4 , Inibidor 1 de Ativador de Plasminogênio/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Estresse Oxidativo , Arginina , Antioxidantes , Insulina , Autofagia , MicroRNAs/genética
13.
Nature ; 628(8008): 604-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538784

RESUMO

The immune system has a critical role in orchestrating tissue healing. As a result, regenerative strategies that control immune components have proved effective1,2. This is particularly relevant when immune dysregulation that results from conditions such as diabetes or advanced age impairs tissue healing following injury2,3. Nociceptive sensory neurons have a crucial role as immunoregulators and exert both protective and harmful effects depending on the context4-12. However, how neuro-immune interactions affect tissue repair and regeneration following acute injury is unclear. Here we show that ablation of the NaV1.8 nociceptor impairs skin wound repair and muscle regeneration after acute tissue injury. Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide calcitonin gene-related peptide (CGRP) during the healing process. CGRP acts via receptor activity-modifying protein 1 (RAMP1) on neutrophils, monocytes and macrophages to inhibit recruitment, accelerate death, enhance efferocytosis and polarize macrophages towards a pro-repair phenotype. The effects of CGRP on neutrophils and macrophages are mediated via thrombospondin-1 release and its subsequent autocrine and/or paracrine effects. In mice without nociceptors and diabetic mice with peripheral neuropathies, delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration. Harnessing neuro-immune interactions has potential to treat non-healing tissues in which dysregulated neuro-immune interactions impair tissue healing.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Macrófagos , Neutrófilos , Nociceptores , Cicatrização , Animais , Camundongos , Comunicação Autócrina , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , 60574 , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Músculo Esquelético , Canal de Sódio Disparado por Voltagem NAV1.8/deficiência , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Nociceptores/metabolismo , Comunicação Parácrina , Doenças do Sistema Nervoso Periférico/complicações , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Regeneração/efeitos dos fármacos , Pele , Trombospondina 1/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia , Humanos , Masculino , Feminino
14.
Toxicol Appl Pharmacol ; 484: 116885, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447873

RESUMO

Diabetic retinopathy (DR) is a main factor affecting vision of patients, and its pathogenesis is not completely clear. The purpose of our study was to investigate correlations between MST2 and DR progression, and to study the possible mechanism of MST2 and its down pathway in high glucose (HG)-mediated RGC-5 apoptosis. The diabetic rat model was established by intraperitoneal injection of streptozotocin (STZ) 60 mg/kg. HE and TUNEL staining were used to evaluate the pathological changes and apoptosis of retinal cells in rats. Western blot, qRT-PCR and immunohistochemistry showed that levels of MST2 were increased in diabetic group (DM) than control. In addition, the differential expression of MST2 is related to HG-induced apoptosis of RGC-5 cells. CCK-8 and Hoechst 33,342 apoptosis experiments showed that MST2 was required in HG-induced apoptosis of RGC-5 cells. Further research revealed that MST2 regulated the protein expression of YAP1 at the level of phosphorylation in HG-induced apoptosis. Simultaneously, we found that Xmu-mp-1 acts as a MST2 inhibitor to alleviate HG-induced apoptosis. In summary, our study indicates that the MST2/YAP1 signaling pathway plays an important role in DR pathogenesis and RGC-5 apoptosis. This discovery provides new opportunities for future drug development targeting this pathway to prevent DR.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Humanos , Ratos , Animais , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Diabetes Mellitus Experimental/complicações , Transdução de Sinais , Apoptose , Marcação In Situ das Extremidades Cortadas
15.
Biochem Pharmacol ; 222: 116102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428828

RESUMO

Ferroptosis, a form of cell death driven by iron-dependent lipid peroxidation, has known as one of the most significant pathological processes involved in diabetic kidney disease (DKD). Stimulator of interferon genes (STING) has been demonstrated its potential in regulating ferroptosis, but the regulatory role in DKD mice and underlying mechanisms haven't been illustrated. To elucidate whether and how STING regulates ferroptosis in DKD, we detected the influence of STING on diabetic-related ferroptosis in a diabetic model and in erastin-induced renal tubular epithelial cells (RTECs). Our study demonstrated that STING was abnormally activated and promoted ferroptosis in DKD. STING deficiency alleviated renal pathologic damages and disfunction in diabetic mice via alleviating ferroptosis and reducing oxidative stress. Mechanismly, STING inhibition was shown to improve ferroptosis and reduce oxidative stress in erastin-induced RTECs. The disruption of ferroportin1 (FPN1) on the basis of STING inhibition abolished the improvements in ferroptosis and promoted reactive oxygen species (ROS) generation. Further, STING inhibition alleviated ferroptosis via stabilizing FPN1 protein level by decreasing ubiquitinated FPN1 for proteasomal degradation. In conclusion, STING deficiency protected against diabetic renal injury via alleviating ferroptosis through stabilizing FPN1 and reducing oxidative stress, providing a possible potential approach for the treatment of DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ferroptose , Animais , Camundongos , Morte Celular , Diabetes Mellitus Experimental/complicações , Rim
16.
J Mater Chem B ; 12(15): 3719-3740, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38529844

RESUMO

Elevated glucose levels, multiple pro-inflammatory cytokines and the generation of excessive reactive oxygen species (ROS) are pivotal characteristics within the microenvironments of chronic periodontitis with diabetes mellitus (CPDM). Control of inflammation and modulation of immune system are required in the initial phase of CPDM treatment, while late severe periodontitis requires a suitable scaffold to promote osteogenesis, rebuild periodontal tissue and reduce alveolar bone resorption. Herein, a whole-course-repair system is introduced by an injectable hydrogel using phenylboronic acid functionalized oxidized sodium alginate (OSA-PBA) and carboxymethyl chitosan (CMC). Epigallocatechin-3-gallate (EGCG) was loaded to simultaneously adjust the mechanical property of the OSA-PBA/CMC + EGCG hydrogel (OPCE). This hydrogel has distinctive adaptability, injectability, and ROS/glucose-triggered release of EGCG, making it an ideal drug delivery carrier. As expected, OPCE hydrogel shows favourable antioxidant and anti-inflammatory properties, along with a regulatory influence on the phenotypic transition of macrophages, providing a favourable immune microenvironment. Apart from that, it provides a favourable mechanical support for osteoblast/osteoclast differentiation regulation at the late proliferation stage of periodontal regeneration. The practical therapeutic effects of OPCE hydrogels were also confirmed when applied for treating periodontitis in diabetic rats. In summary, OPCE hydrogel may be a promising whole-course-repair system for the treatment of CPDM.


Assuntos
Catequina , Periodontite Crônica , Diabetes Mellitus Experimental , Sistemas de Liberação de Medicamentos , Glucose , Espécies Reativas de Oxigênio , Glucose/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Periodontite Crônica/complicações , Periodontite Crônica/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Animais , Ratos , Catequina/administração & dosagem , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Reologia , Hidrogéis , Antioxidantes/metabolismo , Macrófagos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Osteoclastos/citologia , Osteoblastos/citologia , Diferenciação Celular , Regeneração Óssea/efeitos dos fármacos , Microtomografia por Raio-X , Perda do Osso Alveolar/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Alginatos , Bases de Schiff , Masculino , Ratos Sprague-Dawley , Células RAW 264.7 , Camundongos
17.
Biochem Pharmacol ; 223: 116135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508421

RESUMO

Empagliflozin as an antioxidant decreases blood glucose and insulin resistance in type 2 diabetes mellitus. Base on the empagliflozin antioxidant properties we decided to investigate the its effects on the testis histological changes through stereological techniques and biochemical evaluations in T2 diabetes mellitus rats. Rats were divided into: control, diabetes mellitus (DM, streptozotocin + nicotinamide) and diabetes mellitus + empagliflozin (DM + EMPA, 10 mg/kg/day) groups. 56 days after inducing diabetes mellitus testis histological changes and serum biochemical factors along with the level of Bax, Bcl2 and Nrf2 genes expression in the testicular tissue were assessed. A significant decrease in the mean total volume of testis and its components, the level of Bcl2 and Nrf2 gene expression (p < 0.001) along with a significant increase in the level of IL-6, TNF-α, MDA, Bax gene expression were observed in the DM group compared to the control group (p < 0.001). In the DM + EMPA group, the mean total volume of testis and its components, the level of Bcl2 gene expression (p< 0.01) and Nrf2 (p < 0.001) significantly increased whereas the mean level of IL-6 (p < 0.01), TNF-α (p < 0.001), MDA (p < 0.001), Bax (p < 0.001) gene expression significantly decreased compared to the DM group. Our results showed that empagliflozin, by improving the antioxidant defense system, can reduce testicular inflammation and apoptosis and partly prevent the adverse effects of diabetes mellitus on testicular tissue.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glucosídeos , Masculino , Ratos , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Antioxidantes/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Proteína X Associada a bcl-2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estresse Oxidativo
18.
Ren Fail ; 46(1): 2327495, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465879

RESUMO

Diabetic kidney disease (DKD) is a leading factor in end-stage renal disease. The complexity of its pathogenesis, combined with the limited treatment efficacy, necessitates deeper insights into potential causes. Studies suggest that ferroptosis-driven renal tubular damage contributes to DKD's progression, making its counteraction a potential therapeutic strategy. Quercetin, a flavonoid found in numerous fruits and vegetables, has demonstrated DKD mitigation in mouse models, though its protective mechanism remains ambiguous. In this study, we delved into quercetin's potential anti-ferroptotic properties, employing a DKD rat model and high glucose (HG)-treated renal tubular epithelial cell models. Our findings revealed that HG prompted unusual ferroptosis activation in renal tubular epithelial cells. However, quercetin counteracted this by inhibiting ferroptosis and activating NFE2-related factor 2 (Nrf2) expression in both DKD rats and HG-treated HK-2 cells, indicating its renal protective role. Further experiments, both in vivo and in vitro, validated that quercetin stimulates Nrf2. Thus, our research underscores quercetin's potential in DKD treatment by modulating the ferroptosis process via activating Nrf2 in a distinct DKD rat model, offering a fresh perspective on quercetin's protective mechanisms.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ferroptose , Camundongos , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Estreptozocina , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo
19.
Sci Rep ; 14(1): 5754, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459102

RESUMO

The present study aimed to explore the potential ameliorative effect of apigenin (APG) against diabetes-associated genitourinary complications in rats. A diabetic rat model was induced by the intraperitoneal injection of streptozotocin (STZ). All experimental animals were treated with vehicle or vehicle plus APG at a dose of 0.78 mg/kg/day for 10 days, either once diabetes was confirmed or at the end of the 3rd week after confirmation of diabetes. Rats were sacrificed at the end of the fifth week. In addition to the histological assessment, an analysis of kidney function tests and serum testosterone was performed to assess diabetic genitourinary complications. Gene expression of the mitochondrial fission protein, dynamin related protein 1 (Drp1), was measured in renal and testicular tissues using qRT PCR. APG can increase body weight, reduce blood glucose levels, and improve renal and testicular functions in diabetic rats. APG decreased Drp1 overexpression in diabetic animals' kidneys and testes. In summary, our current work discloses that APG attenuates diabetic genitourinary lesions in rats via suppressing Drp1 overexpression.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Ratos , Animais , Apigenina/farmacologia , Apigenina/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Rim/metabolismo , Dinaminas/metabolismo , Nefropatias Diabéticas/patologia
20.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396669

RESUMO

N6-methyladenosine (m6A) constitutes the paramount post-transcriptional modification within eukaryotic mRNA. This modification is subjected to stimulus-dependent regulation within the central nervous system of mammals, being influenced by sensory experiences, learning processes, and injuries. The patterns of m6A methylation within the hippocampal region of diabetes cognitive impairment (DCI) has not been investigated. A DCI model was established by feeding a high-fat diet to C57BL/6J mice. m6A and RNA sequencing was conducted to profile the m6A-tagged transcripts in the hippocampus. Methylated RNA immunoprecipitation with next-generation sequencing and RNA sequencing analyses yielded differentially m6A-modified and expressed genes in the hippocampus of DCI mice, which were enriched in pathways involving synaptic transmission and axonal guidance. Mechanistic analyses revealed a remarkable change in m6A modification levels through alteration of the mRNA expression of m6A methyltransferases (METTL3 and METTL14) and demethylase (FTO) in the hippocampus of DCI mice. We identified a co-mediated specific RNA regulatory strategy that broadens the epigenetic regulatory mechanism of RNA-induced neurodegenerative disorders associated with metabolic and endocrine diseases.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Camundongos Endogâmicos C57BL , Metiltransferases/metabolismo , RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Disfunção Cognitiva/genética , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...